Holographic Neural Architectures

Résumé

Representation learning is at the heart of what makes deep learning effective. In this work, we introduce a new framework for representation learning that we call Holographic Neural Architectures (HNAs). In the same way that an observer can experience the 3D structure of a holographed object by looking at its hologram from several angles, HNAs derive Holographic Representations from the training set. These representations can then be explored by moving along a continuous bounded single dimension. We show that HNAs can be used to make generative networks, state-of-the-art regression models and that they are inherently highly resistant to noise. Finally, we argue that because of their denoising abilities and their capacity to generalize well from very few examples, models based upon HNAs are particularly well suited for biological applications where training examples are rare or noisy.,

Tariq Daouda
Tariq Daouda
Étudiant au doctorat en bio-informatique (2011-2018 avec Claude Perrault, IRIC)
Jérémie Zumer
Jérémie Zumer
Étudiant au doctorat en informatique

Étudiant au Doctorat en Informatique | Amélioration de la spectrométrie de masse peptidique par l’apprentissage profond

Sébastien Lemieux
Sébastien Lemieux
Chercheur principal

Chercheur principal, Unité de recherche en bio-informatique fonctionnelle et structurale, IRIC | Direction scientifique de la plateforme de Bio-informatique | Professeur agrégé, Département de biochimie et médecine moléculaire, Université de Montréal