Warp - a method for neural network interpretability applied to gene expression profiles

Résumé

We show a proof of principle for warping, a method to interpret the inner working of neural networks in the context of gene expression analysis. Warping is an efficient way to gain insight to the inner workings of neural nets and make them more interpretable. We demonstrate the ability of warping to recover meaningful information for a given class on a samplespecific individual basis. We found warping works well in both linearly and nonlinearly separable datasets. These encouraging results show that warping has a potential to be the answer to neural networks interpretability in computational biology.,

Assya Trofimov
Assya Trofimov
Étudiante au doctorat en informatique (2017-2022)

Le modèle Factorized Embeddings: vers un atlas cellulaire basé sur les données de séquençage

Sébastien Lemieux
Sébastien Lemieux
Chercheur principal

Chercheur principal, Unité de recherche en bio-informatique fonctionnelle et structurale, IRIC | Direction scientifique de la plateforme de Bio-informatique | Professeur agrégé, Département de biochimie et médecine moléculaire, Université de Montréal