Transposable elements regulate thymus development and function

Résumé

Transposable elements (TE) are repetitive sequences representing ∼45% of the human and mouse genomes and are highly expressed by medullary thymic epithelial cells (mTEC). In this study, we investigated the role of TEs on T-cell development in the thymus. We performed multi-omic analyses of TEs in human and mouse thymic cells to elucidate their role in T cell development. We report that TE expression in the human thymus is high and shows extensive age- and cell lineage-related variations. TE expression correlates with multiple transcription factors in all cell types of the human thymus. Two cell types express particularly broad TE repertoires - mTECs and plasmacytoid dendritic cells (pDC). In mTECs, transcriptomic data suggest that TEs interact with transcription factors essential for mTEC development and function (e.g., PAX1 and REL), and immunopeptidomic data showed that TEs generate MHC-I-associated peptides implicated in thymocyte education. Notably, AIRE, FEZF2, and CHD4 regulate small yet non-redundant sets of TEs in murine mTECs. Human thymic pDCs homogenously express large numbers of TEs that likely form dsRNA, which can activate innate immune receptors, potentially explaining why thymic pDCs constitutively secrete IFN LJ/β. This study highlights the diversity of interactions between TEs and the adaptive immune system. TEs are genetic parasites, and the two thymic cell types most affected by TEs (mTEcs and pDCs) are essential to establishing central T-cell tolerance. Therefore, we propose that orchestrating TE expression in thymic cells is critical to prevent autoimmunity in vertebrates.,

Publication
eLife
Assya Trofimov
Assya Trofimov
Étudiante au doctorat en informatique (2017-2022)

Le modèle Factorized Embeddings: vers un atlas cellulaire basé sur les données de séquençage

Sébastien Lemieux
Sébastien Lemieux
Chercheur principal

Chercheur principal, Unité de recherche en bio-informatique fonctionnelle et structurale, IRIC | Direction scientifique de la plateforme de Bio-informatique | Professeur agrégé, Département de biochimie et médecine moléculaire, Université de Montréal